
©2024 Databricks Inc. — All rights reserved

SQL
PROGRAMMING IN
DATABRICKS

Serge Rielau & Milan Stefanovic
June 2024

1

©2024 Databricks Inc. — All rights reserved

• Sorting - your way
• Sorting points by distance using LAMBDA and SQL UDF
• Sorting strings, properly (Sneak peek!)

• Short hands
• GROUP BY, ORDER BY
• SELECT * - unleashed

• Variables
• SQL Session Variables
• What about identifiers?

• Scripting
• EXECUTE IMMEDIATE
• SQL/PSM: It's like SQL, but scripted (Sneak peek!) 2

Agenda

©2024 Databricks Inc. — All rights reserved

• Task
“Sort an array of points by distance from (0, 0)”

• Need a custom sort order
• array_sort() for sorting

• lambda function for the math

• Hide complexity in a SQL UDF

3

Sorting - Your way
Quicksort and custom sort expressions

©2024 Databricks Inc. — All rights reserved

• Can be passed to a number of builtin map/array functions

• Operates on each element, value of the map/array

p -> expr(p)
(p[, ...]) -> expr(p, ...)

• p: One or more identifiers, as required by the host function.

• expr(p[, ...]): A simple (no subqueries, or SQL UDF) expression using p.
Result must comply with expectations of the host function.

4

LAMBDA functions
Anonymous function with one or more named parameters

©2024 Databricks Inc. — All rights reserved

• SELECT array_sort(array(5, 2, 8, 1, 3),
(a, b) -> a - b) AS sorted;

=> [1, 2, 3, 5, 8]

Sorting Distances

● d = sqrt(x*x + y*y)
● d1 < d2 <=> x1*x1 + y1*y1 < x2*x2 + y2*y2

5

A simple quicksort
lambda(a,b) > 0 => a > b

d

x

y

©2024 Databricks Inc. — All rights reserved

• SELECT array_sort(points,
(p1, p2) -> (p1.x*p1.x + p1.y*p1.y)

- (p2.x*p2.x + p2.y*p2.y))
AS points

FROM point_arrays;
=> [<1,1>, <-2,0>, <3, 0>, <0,-4>, <3, 3>,

<0,5>, <-5,5>, <6,-4>]

6

Sorting by distance
lambda(p1, p2) > 0 <=> (x1*x1 + y1*y1) > (x2*x2 + y2*y2)

d

x

y

©2024 Databricks Inc. — All rights reserved

• Stored in UC as a reusable asset
• Support named parameter invocation and defaulting
Scalar
• Encapsulate (complex) expressions, including subqueries
• May contain subqueries
• Return a scalar value
• Can be used in most places builtin functions go.
Table
• Encapsulate (complex) correlated subqueries aka a parameterized view
• Can be used in the FROM clause

7

SQL UDF
Scalar and Table UDFs written in SQL

©2024 Databricks Inc. — All rights reserved

CREATE FUNCTION points_sort(
points array<struct<x INT, y INT>>)
RETURN array_sort(points,

(a, b) -> (a.x*a.x + a.y * a.y)
- (b.x*b.x + b.y * b.y));

SELECT points_sort(points) AS points
FROM point_arrays;

=> [<1,1>, <-2,0>, <3, 0>, <0,-4>, <3, 3>,
<0,5>, <-5,5>, <6,-4>]

8

SQL UDF sorting by distance
Hiding all that complexity

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 9

Announcing
Collation
Support

©2024 Databricks Inc. — All rights reserved

● Associate columns, fields, array elements with a collation of choice
○ Case insensitive
○ Accent insensitive
○ Locale aware

● Supported by many string functions such as
○ lower()/upper()
○ substr()
○ locate()
○ like

● Supported by Delta and Photon
● GROUP BY, ORDER BY, comparisons, ...

10

ANSI SQL COLLATE (private preview)
Sorting and comparing strings according to locale

Private Preview

©2024 Databricks Inc. — All rights reserved

SELECT name FROM names ORDER BY name;

Name
Anthony
Bertha
anthony
bertha
Ānthōnī

Is this really what we want here?

11

A look at the default collation
A < Z < a < z < Ā

©2024 Databricks Inc. — All rights reserved

SELECT name FROM names
ORDER BY name COLLATE unicode;

Name
Ānthōnī
anthony
Anthony
bertha
Bertha

Root collation with decent sort order for most locales

12

COLLATE UNICODE
One size, fits most

©2024 Databricks Inc. — All rights reserved

SELECT name
FROM names
WHERE startswith(name COLLATE unicode_ci, 'a')
ORDER BY name COLLATE unicode_ci;

Name
anthony
Anthony

Case insensitive is not accent insensitive: We lost Ānthōnī

13

COLLATE UNICODE_CI
Case insensitive comparisons have entered the chat

©2024 Databricks Inc. — All rights reserved

SELECT name
FROM names
WHERE startswith(name COLLATE unicode_ci_ai, 'a')
ORDER BY name COLLATE unicode_ci_ai;

Name
Ānthōnī
anthony
Anthony

100s of supported predefined collations across many locales

14

COLLATE UNICODE_CI_AI
Equality from a to Ź

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 15

SQL Shorthands

©2024 Databricks Inc. — All rights reserved

• Before
SELECT last, first, id, mgr, extract(year FROM workday),

sum(hours), sum(pay)
FROM emps
GROUP BY last, first, id, mgr, extract(year FROM workday)
ORDER BY last, first, id, mgr, extract(year FROM workday)

• After
SELECT last, first, id, mgr, extract(year FROM workday),

sum(hours), sum(pay)
FROM emps
GROUP BY 1, 2, 3, 4
ORDER BY 1, 2, 3

Is that the best we can do?!
16

GROUP BY and ORDER BY
Humble beginnings

©2024 Databricks Inc. — All rights reserved

• Expectation
• GROUP BY all column in the select list which are not aggregated!

• ORDER BY all columns left to right (or enough to guarantee uniqueness)

• Let Databricks figure it out
SELECT last, first, id, mgr, extract(year FROM workday),

sum(hours), sum(pay)
FROM emps
GROUP BY ALL
ORDER BY ALL

• Better, ...

17

GROUP BY and ORDER BY
Just do it!

©2024 Databricks Inc. — All rights reserved

● SELECT * is the bad boy of SQL!
○ What if the schema changes?
○ No one knows what the SQL is doing!

● We all hate it… But we all use it… why?
Carry over from OLTP where schema evolution is tightly controlled.

In the Lakehouse, schema evolution is expected!

18

SELECT * to ALL
Hold my beer!

©2024 Databricks Inc. — All rights reserved

SELECT * FROM t, s;

● Select all columns available in FROM

SELECT t.* FROM t, s;

● Select all columns available in t

SELECT * EXCEPT (col1, col2) FROM t, s;

● Select all column except col1 and col2
● Can also exclude fields in a struct!

19

SELECT *
The early years

©2024 Databricks Inc. — All rights reserved

WITH person(name, first, address) AS
(VALUES('Coyote', 'Wiley',

named_struct('street', '123 Canyon Rd',
'city', 'Grand Canyon',
'zip', 12345)))

SELECT * EXCEPT (address),
address.* EXCEPT(street)

FROM person;

name first city zip
Coyote Wiley Grand Canyon 12345

20

* unleashed
Unnesting fields in a struct

©2024 Databricks Inc. — All rights reserved

WITH person(name, first, street, city, zip) AS
(VALUES('Coyote', 'Wiley', '123 Canyon Rd',

'Grand Canyon', 12345))
SELECT name, first,

struct(* EXCEPT (name, first)) AS address
FROM person;

name first address
Coyote Wiley {street:"123 Canyon Rd",city:"Grand Canyon",

zip: 12345}

21

* unleashed
Nesting columns into a struct

©2024 Databricks Inc. — All rights reserved

WITH contact(name, work, home) AS
(VALUES('Coyote', '905-555-1234', '408-555-1234'))

SELECT name,
array(* EXCEPT (name)) AS numbers

FROM contact;

name numbers
Coyote ['905-555-1234', '408-555-1234']

22

* unleashed
Transposing columns into an array

©2024 Databricks Inc. — All rights reserved

For fixed & variable length argument functions
● LEAST(*)
● GREATEST(*)
● COALESCE(*)
● CONCAT(*), CONCAT_WS(*)
● … and with UDFs, too

Even in the WHERE clause e.g. IN(*)

23

* unleashed
Can be used just about anywhere.

©2024 Databricks Inc. — All rights reserved

WITH person(name, first, street, city, zip) AS
(VALUES('Coyote', 'Wiley', '123 Canyon Rd',

'Grand Canyon', 12345))
SELECT concat_ws(', ', *) AS result
FROM person;

result
Coyote, Wiley, 123 Canyon Rd, Grand Canyon, 12345

24

* unleashed
Finally: Serializing a row into a string

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 25

Variables et al.

©2024 Databricks Inc. — All rights reserved

● Uniquely named placeholder for a typed literal
● Safe from SQL injection
● Adjust type and input through automatically generated notebook widget
● Reference most places literals go.

Cannot fill value from SQL …

26

Named parameters
The mustache ‘{{ }}’ is dead, long live the colon ‘:’!

©2024 Databricks Inc. — All rights reserved

● Declarative, with type and default.
DECLARE VARIABLE name STRING DEFAULT 'anthony';
or
DECLARE name = 'anthony';

● Reference anywhere a query literal can go.
SELECT * FROM names
WHERE name = session.name COLLATE unicode_ci;

name
anthony
Anthony

27

Session variables
Flowing data through a session, using SQL only.

©2024 Databricks Inc. — All rights reserved

● Set using SQL expressions
SET VAR name = (SELECT min(name) FROM names);

● Set multiple variables at once
SET VAR (first, last) =
(SELECT first, last FROM person WHERE id = :id)

● Reset to default
SET VAR name = DEFAULT;

● Private to the session (like a temp view)
28

Session variables
Flowing data through a session, using SQL only.

©2024 Databricks Inc. — All rights reserved 29

How about table parameters/variables?
Can I pass a table name as a parameter?

● Values are not names
● Need to teach Databricks to

○ Evaluate value during parsing
○ Turn values into a name

©2024 Databricks Inc. — All rights reserved

IDENTIFIER(constStr)

constStr: an expression that can be evaluated as a string before query runs.

Applies to
• Most identifiers in a query, or DML statement

function/column/table name
• Subject of many DDL statements

ALTER/CREATE/DROP
• Subject of auxiliary statements
• USE

30

Parameterizing names
Using the IDENTIFIER clause

©2024 Databricks Inc. — All rights reserved

DECLARE table_name = 'names';
DECLARE col_name = 'name';
DECLARE func_name = 'count';

SELECT IDENTIFIER(func_name)(IDENTIFIER(col_name))
FROM IDENTIFIER(table_name) AS t
WHERE IDENTIFIER('t.' || col_name) = 'Anthony';

result
1

31

Parameterizing names
Using session variables

©2024 Databricks Inc. — All rights reserved

SELECT IDENTIFIER(:func_name)(IDENTIFIER(:col_name))
FROM IDENTIFIER(:table_name) AS t
WHERE IDENTIFIER('t.' || :col_name) = 'Anthony';

result
1

32

Parameterizing names
Using named parameters

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 33

SQL Scripting

©2024 Databricks Inc. — All rights reserved

SQL is nice but I need python for procedural stuff
Not anymore

• Support for control flow, iterators & error handling
Natively in SQL

• Control flow → IF/ELSE, CASE
• Looping → WHILE, REPEAT, ITERATE
• Resultset iterator → FOR
• Exception handling → CONTINUE/EXIT
• Parameterized queries → EXECUTE IMMEDIATE

• Following the SQL/PSM standard
34

SQL Scripting
It’s SQL, but with control flow!

Private Preview

©2024 Databricks Inc. — All rights reserved

I have a common column in many tables that has a spelling error and I want to
rename it in all tables.

35

SQL Scripting - real world example
Renaming all columns with spelling errors

colour

©2024 Databricks Inc. — All rights reserved

● Use the information schema

-- Fetch all tables in desired catalog and schema
-- and store them into array
SELECT

array_agg(table_name)
FROM INFORMATION_SCHEMA.columns
WHERE column_name = oldColName

36

SQL Scripting - real world example
How do I find all my tables?

©2024 Databricks Inc. — All rights reserved

• Iterate with WHILE loop

WHILE i < array_size(tableArray)
DO
.
.
END WHILE;

SQL Scripting - real world example

37

Loop through the tables

©2024 Databricks Inc. — All rights reserved

• But you cannot rename column in VIEWs
• Solution: NEED IF branch

IF tableType != 'VIEW'
THEN
…
ELSE –- it’s a view
…

END IF;

SQL Scripting - real world example

38

Conditional logic to special case views

©2024 Databricks Inc. — All rights reserved

• Finally we need to construct alter statement based on table and column
names.

• Solution: EXECUTE IMMEDIATE

EXECUTE IMMEDIATE
'ALTER TABLE ' || tableName ||
' RENAME COLUMN ' || oldColName || ' TO ' || newColName

SQL Scripting - real world example

39

Dynamically generate SQL

©2024 Databricks Inc. — All rights reserved

-- parameters
DECLARE oldColName = 'ColoUr';
DECLARE newColName = 'color';

BEGIN
DECLARE tableArray Array<STRING>;
DECLARE tableType STRING;
DECLARE i INT = 0;
DECLARE alterQuery STRING;

SET tableArray = (
SELECT array_agg(table_name)

FROM INFORMATION_SCHEMA.columns
WHERE column_name COLLATE UNICODE_CI

= oldColName);

SQL Scripting - real world example

40

Glueing it all together!

WHILE i < array_size(tableArray) DO
SET tableType = (

SELECT table_type
FROM INFORMATION_SCHEMA.tables
WHERE table_name = tableArray[i]);

IF tableType != 'VIEW' COLLATE UNICODE_CI
THEN

SET alterQuery =
'ALTER TABLE ' || tableArray[i] ||
' RENAME COLUMN ' || oldColName ||
' TO ' || newColName;

EXECUTE IMMEDIATE alterQuery;
END IF;

SET i = i + 1;
END WHILE;

END;

©2024 Databricks Inc. — All rights reserved

• Lambda functions
• SQL UDF
• String collation In Private Preview
• Named Parameter Markers
• SQL Session variables
• IDENTIFIER clause
• EXECUTE IMMEDIATE
• SQL Scripting In Private Preview

Summary

41

Databricks supports interesting SQL features with many more to come

©2024 Databricks Inc. — All rights reserved 42

Q&A
Private Preview Signup form

https://forms.gle/qXMG2NKj3DbHg1Lh7

	SQL PROGRAMMING IN DATABRICKS

	Agenda
	Sorting - Your way
	LAMBDA functions
	A simple quicksort
	Sorting by distance
	SQL UDF
	SQL UDF sorting by distance
	Announcing�Collation Support

	ANSI SQL COLLATE (private preview)
	A look at the default collation
	COLLATE UNICODE
	COLLATE UNICODE_CI
	COLLATE UNICODE_CI_AI
	SQL Shorthands

	GROUP BY and ORDER BY
	GROUP BY and ORDER BY
	SELECT * to ALL
	SELECT *
	* unleashed
	* unleashed
	* unleashed
	* unleashed
	* unleashed
	Variables et al.

	Named parameters
	Session variables
	Session variables
	How about table parameters/variables?
	Parameterizing names
	Parameterizing names
	Parameterizing names
	SQL Scripting

	SQL Scripting
	SQL Scripting - real world example
	SQL Scripting - real world example
	SQL Scripting - real world example

	SQL Scripting - real world example

	SQL Scripting - real world example

	SQL Scripting - real world example

	Summary
	Q&A

