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• Sorting - your way
• Sorting points by distance using LAMBDA and SQL UDF
• Sorting strings, properly (Sneak peek!)

• Short hands
• GROUP BY, ORDER BY
• SELECT * - unleashed

• Variables
• SQL Session Variables
• What about identifiers?

• Scripting
• EXECUTE IMMEDIATE
• SQL/PSM: It's like SQL, but scripted (Sneak peek!) 2

Agenda
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• Task
“Sort an array of points by distance from (0, 0)”

• Need a custom sort order
• array_sort() for sorting

• lambda function for the math

• Hide complexity in a SQL UDF
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Sorting - Your way
Quicksort and custom sort expressions
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• Can be passed to a number of builtin map/array functions

• Operates on each element, value of the map/array

p -> expr(p)
(p[, ...]) -> expr(p, ...)

• p: One or more identifiers, as required by the host function.

• expr(p[, ...]): A simple (no subqueries, or SQL UDF) expression using p. 
Result must comply with expectations of the host function.
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LAMBDA functions
Anonymous function with one or more named parameters
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• SELECT array_sort(array(5, 2, 8, 1, 3),
(a, b) -> a - b) AS sorted;

=> [1, 2, 3, 5, 8]

Sorting Distances

● d = sqrt(x*x + y*y)
● d1 < d2 <=> x1*x1 + y1*y1 < x2*x2 + y2*y2
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A simple quicksort
lambda(a,b) > 0 => a > b

d

x

y
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• SELECT array_sort(points,
(p1, p2) -> (p1.x*p1.x + p1.y*p1.y)

- (p2.x*p2.x + p2.y*p2.y))
AS points

FROM point_arrays;
=> [<1,1>, <-2,0>, <3, 0>, <0,-4>, <3, 3>,

<0,5>, <-5,5>, <6,-4>]
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Sorting by distance
lambda(p1, p2) > 0 <=> (x1*x1 + y1*y1) > (x2*x2 + y2*y2)

d

x

y
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• Stored in UC as a reusable asset
• Support named parameter invocation and defaulting
Scalar
• Encapsulate (complex) expressions, including subqueries
• May contain subqueries
• Return a scalar value
• Can be used in most places builtin functions go.
Table
• Encapsulate (complex) correlated subqueries aka a parameterized view
• Can be used in the FROM clause
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SQL UDF
Scalar and Table UDFs written in SQL
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CREATE FUNCTION points_sort(
points array<struct<x INT, y INT>>)
RETURN array_sort(points,

(a, b) -> (a.x*a.x + a.y * a.y)
- (b.x*b.x + b.y * b.y));

SELECT points_sort(points) AS points
FROM point_arrays;

=> [<1,1>, <-2,0>, <3, 0>, <0,-4>, <3, 3>,
<0,5>, <-5,5>, <6,-4>]
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SQL UDF sorting by distance 
Hiding all that complexity
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Announcing
Collation 
Support
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● Associate columns, fields, array elements with a collation of choice
○ Case insensitive
○ Accent insensitive
○ Locale aware

● Supported by many string functions such as
○ lower()/upper()
○ substr()
○ locate()
○ like

● Supported by Delta and Photon
● GROUP BY, ORDER BY, comparisons, ...
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ANSI SQL COLLATE (private preview) 
Sorting and comparing strings according to locale

Private Preview
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SELECT name FROM names ORDER BY name;

Name  
Anthony
Bertha
anthony
bertha
Ānthōnī

Is this really what we want here?
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A look at the default collation 
A < Z < a < z < Ā
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SELECT name FROM names
ORDER BY name COLLATE unicode;

Name  
Ānthōnī
anthony
Anthony
bertha
Bertha

Root collation with decent sort order for most locales
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COLLATE UNICODE 
One size, fits most
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SELECT name
FROM names
WHERE startswith(name COLLATE unicode_ci, 'a')
ORDER BY name COLLATE unicode_ci;

Name  
anthony
Anthony

Case insensitive is not accent insensitive: We lost Ānthōnī
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COLLATE UNICODE_CI 
Case insensitive comparisons have entered the chat
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SELECT name
FROM names
WHERE startswith(name COLLATE unicode_ci_ai, 'a')
ORDER BY name COLLATE unicode_ci_ai;

Name  
Ānthōnī
anthony
Anthony

100s of supported predefined collations across many locales
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COLLATE UNICODE_CI_AI 
Equality from a to Ź
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SQL Shorthands
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• Before
SELECT last, first, id, mgr, extract(year FROM workday),

sum(hours), sum(pay)
FROM emps
GROUP BY last, first, id, mgr, extract(year FROM workday)
ORDER BY last, first, id, mgr, extract(year FROM workday)

• After
SELECT last, first, id, mgr, extract(year FROM workday),

sum(hours), sum(pay)
FROM emps
GROUP BY 1, 2, 3, 4
ORDER BY 1, 2, 3

Is that the best we can do?!
16

GROUP BY and ORDER BY
Humble beginnings 
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• Expectation
• GROUP BY all column in the select list which are not aggregated!

• ORDER BY all columns left to right (or enough to guarantee uniqueness)

• Let Databricks figure it out 
SELECT last, first, id, mgr, extract(year FROM workday),

sum(hours), sum(pay)
FROM emps
GROUP BY ALL
ORDER BY ALL

• Better, ...
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GROUP BY and ORDER BY
Just do it! 
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● SELECT * is the bad boy of SQL!
○ What if the schema changes?
○ No one knows what the SQL is doing!

● We all hate it… But we all use it… why?
Carry over from OLTP where schema evolution is tightly controlled.

In the Lakehouse, schema evolution is expected!
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SELECT * to ALL
Hold my beer! 
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SELECT * FROM t, s;

● Select all columns available in FROM

SELECT t.* FROM t, s;

● Select all columns available in t

SELECT * EXCEPT (col1, col2) FROM t, s;

● Select all column except col1 and col2
● Can also exclude fields in a struct!

19

SELECT *
The early years 
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WITH person(name, first, address) AS
(VALUES('Coyote', 'Wiley',

named_struct('street', '123 Canyon Rd',
'city', 'Grand Canyon',
'zip', 12345)))

SELECT * EXCEPT (address),
address.* EXCEPT(street)

FROM person;

name first city zip
Coyote Wiley Grand Canyon 12345
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* unleashed
Unnesting fields in a struct
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WITH person(name, first, street, city, zip) AS
(VALUES('Coyote', 'Wiley', '123 Canyon Rd',

'Grand Canyon', 12345))
SELECT name, first,

struct(* EXCEPT (name, first)) AS address
FROM person;

name first address
Coyote Wiley {street:"123 Canyon Rd",city:"Grand Canyon",

zip: 12345}
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* unleashed
Nesting columns into a struct
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WITH contact(name, work, home) AS
(VALUES('Coyote', '905-555-1234', '408-555-1234'))

SELECT name,
array(* EXCEPT (name)) AS numbers

FROM contact;

name numbers
Coyote ['905-555-1234', '408-555-1234']
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* unleashed
Transposing columns into an array
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For fixed & variable length argument functions
● LEAST(*)
● GREATEST(*)
● COALESCE(*)
● CONCAT(*), CONCAT_WS(*)
● … and with UDFs, too

Even in the WHERE clause e.g. IN(*)
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* unleashed
Can be used just about anywhere.
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WITH person(name, first, street, city, zip) AS
(VALUES('Coyote', 'Wiley', '123 Canyon Rd',

'Grand Canyon', 12345))
SELECT concat_ws(', ', *) AS result
FROM person;

result
Coyote, Wiley, 123 Canyon Rd, Grand Canyon, 12345
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* unleashed
Finally: Serializing a row into a string
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Variables et al.
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● Uniquely named placeholder for a typed literal
● Safe from SQL injection
● Adjust type and input through automatically generated notebook widget
● Reference most places literals go.

Cannot fill value from SQL …

26

Named parameters
The mustache ‘{{ }}’ is  dead, long live the colon ‘:’!
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● Declarative, with type and default.
DECLARE VARIABLE name STRING DEFAULT 'anthony';
or
DECLARE name = 'anthony';

● Reference anywhere a query literal can go.
SELECT * FROM names
WHERE name = session.name COLLATE unicode_ci;

name
anthony
Anthony
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Session variables
Flowing data through a session, using SQL only.
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● Set using SQL expressions
SET VAR name = (SELECT min(name) FROM names);

● Set multiple variables at once
SET VAR (first, last) =
(SELECT first, last FROM person WHERE id = :id)

● Reset to default
SET VAR name = DEFAULT;

● Private to the session (like a temp view)
28

Session variables
Flowing data through a session, using SQL only.
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How about table parameters/variables?
Can I pass a table name as a parameter?

● Values are not names
● Need to teach Databricks to

○ Evaluate value during parsing
○ Turn values into a name
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IDENTIFIER(constStr)

constStr: an expression that can be evaluated as a string before query runs.

Applies to
• Most identifiers in a query, or DML statement

function/column/table name
• Subject of many DDL statements

ALTER/CREATE/DROP
• Subject of auxiliary statements
• USE

30

Parameterizing names
Using the IDENTIFIER clause
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DECLARE table_name = 'names';
DECLARE col_name   = 'name';
DECLARE func_name  = 'count';

SELECT IDENTIFIER(func_name)(IDENTIFIER(col_name))
FROM IDENTIFIER(table_name) AS t
WHERE IDENTIFIER('t.' || col_name) = 'Anthony';

result
1
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Parameterizing names
Using session variables
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SELECT IDENTIFIER(:func_name)(IDENTIFIER(:col_name))
FROM IDENTIFIER(:table_name) AS t
WHERE IDENTIFIER('t.' || :col_name) = 'Anthony';

result
1
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Parameterizing names
Using named parameters
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SQL Scripting
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SQL is nice but I need python for procedural stuff
Not anymore

• Support for control flow, iterators & error handling
Natively in SQL

• Control flow → IF/ELSE, CASE
• Looping → WHILE, REPEAT, ITERATE
• Resultset iterator → FOR
• Exception handling → CONTINUE/EXIT
• Parameterized queries → EXECUTE IMMEDIATE

• Following the SQL/PSM standard
34

SQL Scripting
It’s SQL, but with control flow!

Private Preview
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I have a common column in many tables that has a spelling error and I want to 
rename it in all tables.

35

SQL Scripting - real world example
Renaming all columns with spelling errors

colour
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● Use the information schema

-- Fetch all tables in desired catalog and schema
-- and store them into array
SELECT

array_agg(table_name)
FROM INFORMATION_SCHEMA.columns
WHERE column_name = oldColName

36

SQL Scripting - real world example
How do I find all my tables?
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• Iterate with WHILE loop

WHILE i < array_size(tableArray)
DO
.
.
END WHILE;

SQL Scripting - real world example

37

Loop through the tables
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• But you cannot rename column in VIEWs
• Solution: NEED IF branch

IF tableType != 'VIEW'
THEN
…
ELSE –- it’s a view
…

END IF;

SQL Scripting - real world example

38

Conditional logic to special case views
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• Finally we need to construct alter statement based on table and column 
names.

• Solution: EXECUTE IMMEDIATE

EXECUTE IMMEDIATE
'ALTER TABLE ' || tableName ||
' RENAME COLUMN ' || oldColName || ' TO ' || newColName

SQL Scripting - real world example

39

Dynamically generate SQL
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-- parameters
DECLARE oldColName = 'ColoUr';
DECLARE newColName = 'color';

BEGIN
DECLARE tableArray Array<STRING>;
DECLARE tableType STRING;
DECLARE i INT = 0;
DECLARE alterQuery STRING;

SET tableArray = (
SELECT array_agg(table_name)

FROM INFORMATION_SCHEMA.columns
WHERE column_name COLLATE UNICODE_CI

= oldColName);

SQL Scripting - real world example
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Glueing it all together!

WHILE i < array_size(tableArray) DO
SET tableType = (

SELECT table_type
FROM INFORMATION_SCHEMA.tables
WHERE table_name = tableArray[i]);

IF tableType != 'VIEW' COLLATE UNICODE_CI
THEN

SET alterQuery =
'ALTER TABLE ' || tableArray[i] ||
' RENAME COLUMN ' || oldColName ||
' TO ' || newColName;

EXECUTE IMMEDIATE alterQuery;
END IF;

SET i = i + 1;
END WHILE;

END;
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• Lambda functions
• SQL UDF
• String collation In Private Preview
• Named Parameter Markers
• SQL Session variables
• IDENTIFIER clause
• EXECUTE IMMEDIATE
• SQL Scripting In Private Preview

Summary
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Databricks supports interesting SQL features with many more to come
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Q&A
Private Preview Signup form

https://forms.gle/qXMG2NKj3DbHg1Lh7
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